Abstract

Research has shown that deep neural networks are able to help and assist human workers throughout the industrial sector via different computer vision applications. However, such data-driven learning approaches require a very large number of labeled training images in order to generalize well and achieve high accuracies that meet industry standards. Gathering and labeling large amounts of images is both expensive and time consuming, specifically for industrial use-cases. In this work, we introduce BAR (Bounding-box Automated Refinement), a reinforcement learning agent that learns to correct inaccurate bounding-boxes that are weakly generated by certain detection methods, or wrongly annotated by a human, using either an offline training method with Deep Reinforcement Learning (BAR-DRL), or an online one using Contextual Bandits (BAR-CB). Our agent limits the human intervention to correcting or verifying a subset of bounding-boxes instead of re-drawing new ones. Results on a car industry-related dataset and on the PASCAL VOC dataset show a consistent increase of up to 0.28 in the Intersection-over-Union of bounding-boxes with their desired ground-truths, while saving 30%-82% of human intervention time in either correcting or re-drawing inaccurate proposals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.