Abstract

BackgroundStaphylococcus aureus is a versatile pathogen that can cause a wide range of infections in humans. Biofilms play a crucial role in the pathogenicity of S. aureus and contribute to its ability to cause persistent and chronic infections. Baohuoside I has garnered increasing recognition as a natural flavonol glycoside with a wide spectrum of health-related activities. PurposeThe antibacterial and anti-biofilm properties of Baohuoside I have not been extensively investigated. Our study aimed to assess its inhibitory effects and the underlying mechanisms on biofilm formation and hemolytic capacity in S. aureus. Study Design/MethodsThe impact of Baohuoside I on the biofilm and virulence of S. aureus was evaluated through in vitro experiments and Galleria mellonella as an in vivo infection model. The mechanisms were explored by Drug affinity responsive target stability (DARTS) and validated in genetic knockout strain and through molecular biological experiments using DARTS, molecular docking, electrophoretic mobility shift assay (EMSA), and bio-layer interferometry (BLI). ResultsBaohuoside I significantly inhibits the formation of S. aureus biofilms and hemolytic activity at 6.25 µM. Proteomics analysis revealed that treatment with Baohuoside I led to a reduction in the expression of quorum-sensing system agr-regulated genes. DARTS analysis identified Staphylococcus accessory regulator factor (SarZ), a key regulator involved in the expression of virulence factors in S. aureus by acting as activator of the agr quorum-sensing system, was the direct target of Baohuoside I. Molecular docking, DARTS, BLI and EMSA assays collectively confirmed the direct binding of Baohuoside I to SarZ, inhibiting its binding to downstream promoters. Furthermore, it is found through site-directed protein mutagenesis that the Tyr27 and Phe117 residues are key for Baohuoside I binding to SarZ. Additionally, the knockout of SarZ significantly diminished the hemolytic ability of S. aureus, underscoring its crucial role as a pivotal regulator of virulence. Lastly, in vivo tests utilizing the G. mellonella infection model demonstrated the efficacy of Baohuoside I. ConclusionThis study provides valuable insights into the mechanism by which Baohuoside I inhibits the virulence of S. aureus through its interaction with SarZ. These findings highlight the significance of SarZ as an effective target against the virulence of S. aureus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call