Abstract

Ginseng is a very famous Chinese herbal medicine with various pharmacological effects. Ginsenosides, the main effective compounds of ginseng, show favorable biological activities in the central nervous system (CNS), but the protein targets of ginsenosides in brain tissues have not been clarified clearly. First, we screened proteins that interact with ginsenosides by mass spectrometry-based drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). Then, we identified and confirmed adenylate kinase 5 (AK5) as a target protein of ginsenosides by biolayer interferometry (BLI), isothermal titration calorimetry (ITC), and molecular docking. Finally, an enzyme activity kit was used to determine the effect of 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, on AK5 activities in vivo and in vitro. We screened out seven overlapping target proteins by proteomics of DARTS and CETSA. The BLI direct action assays showed that the direct interaction of PPD with AK5 was higher compared to the parental ginsenosides. Subsequently, BLI kinetic analysis and ITC assay showed that PPD specifically bound to AK5. Furthermore, key amino acid mutations predicted by molecular docking decreased the affinity between PPD and AK5. Enzyme activity assays showed that PPD increased AK5 activities in vivo and in vitro. The above-mentioned findings indicated that AK5 is a protein target of ginsenoside in the brain and PPD is considered to be a small-molecular activator of AK5, which can improve comprehension of the molecular mechanisms of ginseng pharmacological effects in the CNS and further develop AK5 activators based on the dammarane-type triterpenoid structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call