Abstract

In this paper, dispersive cloak design with broad bandwidth and minimal scattering cross section is proposed by appropriately selecting a radial permeability for each shell in a discretized reduced cloak. The dispersive medium is constructed by artificially varying the inner radius of the cloak with frequency, and this variation results into unique material properties at every frequency. The variation of inner radius of the cloak with frequency is artificial since the actual physical dimension of inner radius remains invariant. The relation between bandwidth and geometrical parameters of cloak is obtained by ensuring that transformation media must satisfy the condition that group velocity must remain less than the speed of light along every direction for a finite frequency range. The proposed cloak provides $$8.9\,\%$$ bandwidth with respect to the center frequency for $$50\,\%$$ reduction in total scattering cross section, and at the design frequency, the minimum scattering cross section obtained is $$0.266$$ . The proposed dispersive cloak design is verified by numerical full-wave simulations results which also confirm good cloaking performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.