Abstract

The ground surface perturbation lattice (GSPL) structure is investigated to suppress power noise in the power distribution network of mixed signal circuits. In order to enhance the bandwidth of the noise suppression, the GSPL structure is implemented by using multiple vias in the mushroom-like electromagnetic bandgap structure. Under the concept of multiple vias, the lower and upper bound cutoff frequencies of the bandgap are influenced by the position of the vias. An optimum position for the vias is found to achieve maximum stopband bandwidth. In this paper, the stopband mechanism of GSPL structure is investigated and the corresponding equivalent circuit model is proposed to quickly predict the lower and upper bound cutoff frequencies. Suitable test boards are fabricated and measured to demonstrate the accuracy of the design concept. The result shows that there is a good consistency between simulated, modeled, and measured results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.