Abstract

The bandwidth and unpredictability properties of chaotic semiconductor ring lasers (SRLs) are numerically investigated. The SRL is brought to chaotic behaviors by utilizing chaotic optical injection from a master laser with optical feedback. The bandwidth and unpredictability degree of chaotic signal are examined for parameter regions of injection strength and frequency detuning. The chaos unpredictability degree is evaluated quantitatively by permutation entropy (PE). It is shown that, chaos can be obtained in large parameter regions, and simultaneous enhancement of bandwidth and unpredictability degree could be achieved for proper injection parameters. Such results are important for carrying out chaos-based communications and fast random number generations (RNGs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.