Abstract
To develop a method for banding-free balanced SSFP cardiac cine imaging in a single breath-hold. A frequency modulation scheme was designed for cardiac applications to eliminate the time normally required for steady-state stabilization between multiple phase-cycled acquisitions. Highly undersampled acquisitions were reconstructed using a model-based reconstruction that exploits redundancy both over time and between phase cycles. Performance of the methods was evaluated using both retrospective and prospective undersampling in scans with and without frequency modulation from four subjects. The proposed methods enabled balanced SSFP cardiac cine with three effective phase cycles in only 10 heartbeats. Images acquired with frequency modulation and with standard phase cycling were of similar quality. The combination of temporal and inter-acquisition similarity constraints reduced errors by approximately 45% compared to enforcing similarity constraints over time alone. In off-resonance conditions that preclude the acquisition of single-acquisition balanced SSFP, phase cycling can eliminate the dark bands in balanced SSFP cine cardiac imaging at the expense of some SNR efficiency. The proposed techniques permit these types of acquisitions in a single breath-hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.