Abstract

A novel balanced SSFP technique for the separation or suppression of different resonance frequencies (e.g., fat suppression) is presented. The method is based on applying two alternating and different repetition times, TR(1) and TR(2). This RF scheme manipulates the sensitivity of balanced SSFP to off-resonance effects by a modification of the frequency response profile. Starting from a general approach, an optimally broadened stopband within the frequency response function is designed. This is achieved with a TR(2) being one third of TR(1) and an RF-pulse phase increment of 90 degrees . With this approach TR(2) is too short ( approximately 1 ms) to switch imaging gradients and is only used to change the frequency sensitivity. Without a significant change of the spectral position of the stopband, TR(1) can be varied over a range of values ( approximately 2.5-4.5 ms) while TR(2) and phase cycling is kept constant. On-resonance spins show a magnetization behavior similar to balanced SSFP, but with maximal magnetization at flip angles about 10 degrees lower than in balanced SSFP. The total scan time is increased by about 30% compared to conventional balanced SSFP. The new technique was applied on phantoms and volunteers to produce rapid, fat suppressed images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.