Abstract

We have calculated band-edge energies for most combinations of zincblende AlN, GaN, InN, GaP, GaAs, InP, InAs, GaSb and InSb in which one material is strained to the other. Calculations were done for three different geometries, quantum wells, wires, and dots, and mean effective masses were computed in order to estimate confinement energies. For quantum wells, we have also calculated band-edges for ternary alloys. Energy gaps, including confinement, may be easily and accurately estimated using band energies and a simple effective mass approximation, yielding excellent agreement with experimental results. By calculating all material combinations we have identified novel and interesting material combinations, such as artificial donors, that have not been experimentally realized. The calculations were perfomed using strain-dependent k-dot-p theory and provide a comprehensive overview of band structures for strained heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.