Abstract
Human chromosomes karyotyping is an important means to diagnose genetic diseases. Chromosome image type recognition is a key step in the karyotyping process. Accurate and efficient identification is of great significance for automatic chromosome karyotyping. In this paper, we propose a model named segmentally recalibrated dense convolutional network (SR-DenseNet). In each stage of the model, the dense connected network layers is used to extract the features of different abstract levels of chromosomes automatically, and then the concatenation of all the layers which extract different local features is recalibrated with squeeze-and-excitation (SE) block. SE blocks explicitly construct learnable structures for importance of the features. Then a model fusion method is proposed and an expert group of chromosome recognition models is constructed. On the public available Copenhagen chromosome recognition dataset (G-bands) the proposed model achieves error rate of only 1.60%, and with model fusion the error further drops to 0.99%. On the Padova chromosome dataset (Q-bands) the model gets the corresponding error rate of 6.67%, and with model fusion the error further drops to 5.98%. The experimental results show that the method proposed in this paper is effective and has the potential to realize the automation of chromosome type recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.