Abstract

Deep Convolutional Neural Networks (CNNs), such as Dense Convolutional Network (DenseNet), have achieved great success for image representation learning by capturing deep hierarchical features. However, most existing network architectures of simply stacking the convolutional layers fail to enable them to fully discover local and global feature information between layers. In this paper, we mainly investigate how to enhance the local and global feature learning abilities of DenseNet by fully exploiting the hierarchical features from all convolutional layers. Technically, we propose an effective convolutional deep model termed Dense Residual Network (DRN) for the task of optical character recognition. To define DRN, we propose a refined residual dense block (r-RDB) to retain the ability of local feature fusion and local residual learning of original RDB, which can reduce the computing efforts of inner layers at the same time. After fully capturing local residual dense features, we utilize the sum operation and several r-RDBs to construct a new block termed global dense block (GDB) by imitating the construction of dense blocks to adaptively learn global dense residual features in a holistic way. Finally, we use two convolutional layers to design a down-sampling block to reduce the global feature size and extract more informative deeper features. Extensive results show that our DRN can deliver enhanced results, compared with other related deep models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.