Abstract

The question of band offsets and details of exciton binding are investigated in the CdTe/(Cd,Mn)Te heterostructure in the quantum-well limit. Photoluminescence excitation spectroscopy in external magnetic fields is used to vary the quantum-well potential depths in this moderately strained (0.6% lattice mismatch) diluted magnetic semiconductor heterostructure. Large Zeeman splittings are observed at all the principal quantum-well transitions and at the barrier band gap for a structure of CdTe well thicknesses of 50 A\r{} and a Mn-ion concentration in the barrier layer of x=0.24. A variational theory is developed for excitons, especially accounting for the possibility of a small valence-band offset. Good agreement between theory and experiment is obtained and a band offset of 25 meV is deduced for the heavy-hole valence band, corresponding to a conduction- to valence-band offset ratio of about 14:1. This implies that the valence-band offset in a hypothetical strain-free case is virtually zero. The accuracy of the offset determination is believed to be better than 10 meV. Exciton binding energies are found to vary appreciably in the magnetic field; the zero-field value is approximately twice that for bulk CdTe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call