Abstract

Pure and Nd3+-doped tin oxide (SnO2) nanoparticles have been prepared by the sol–gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive spectroscopy and UV–visible spectroscopy. The XRD patterns of all the samples are identified as tetragonal rutile-type SnO2 phase which is further confirmed by TEM analysis. Neodymium doping introduces band gap narrowing in the prepared samples and enhances their absorption towards the visible-light region. The photocatalytic activity of all the samples was evaluated by monitoring the degradation of methylene blue solution under day light illumination and it was found that the photocatalytic activity significantly increases for the samples calcined at 600 than 400°C, which is due to the effective charge separation of photogenerated electron–hole pairs. The efficiency of photocatalysts was found to be related to neodymium doping percentage and calcination temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.