Abstract
Reducing ion beam damage from the focused ion beam (FIB) during fabrication of cross sections is a well-known challenge for materials characterization, especially cross sectional characterization of nanostructures. To address this, a new method has been developed for cross section fabrication enabling high resolution transmission electron microscopy (TEM) analysis of 3-D nanostructures free of surrounding material and free of damage detectable by TEM analysis. Before FIB processing, nanopillars are encapsulated in a sacrificial oxide which acts as a protective layer during FIB milling. The cross sectional TEM lamella containing the nanopillars is then mounted and thinned with some modifications to conventional FIB sample preparation that provide stability for the lamella during the following wet-chemical dip etch. The wet-chemical etch of the TEM lamella removes the sacrificial oxide layer, freeing the nanopillars from any material that would obscure TEM imaging. Both high resolution TEM and aberration corrected scanning TEM images of Si/SiGe pillars with diameters down to 30 nm demonstrate the successful application of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.