Abstract

A quadratic dependence of the band gap energy on the alloy composition x was quantified for CuAl(SxSe1−x)2 films grown by low-pressure metalorganic vapor phase epitaxy, by means of photoreflectance and photoluminescence excitation spectroscopies. The bowing parameter for the A-exciton energy was estimated to be 0.20 eV. Several high-quality films grown on GaAs(001) substrates exhibited excitonic photoluminescence peaks in the blue to ultraviolet spectral ranges. The flow rate of the Al precursor was found to affect the incorporation ratio of S/Se, indicating that the Al–S compound plays a key role in controlling x. All films grown on GaAs(001) showed c(001) orientation. Conversely, the epitaxitial orientation of the films on GaP(001) changed from a(100) to c(001) with an increase in x. The critical value of x was around 0.5. The preferred orientations were explained by the natural selection rule under which the lattice strain in the epilayer is minimized. The residual strain in the 0.5-μm-thick epilayers on GaAs(001) was nearly constant for all x, although the lattice mismatch between the epilayer and the GaAs substrate varied from 0.62% to 5.39% with an increase in x. Consequently the strain was attributed to thermal stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.