Abstract

By band engineering the iron chalcogenide Fe(Se,Te) via ab-initio calculations, we search for topological surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for non-stoichiometric compositions on a surface Dirac cone where issues like disorder scattering and charge transfer between relevant electronic states have to be addressed. However, this surface Dirac cone is well above the Fermi-level. Our goal is to theoretically design a substituted crystal in which the surface Dirac cone is shifted towards the Fermi-level by modifying the bulk material without disturbing the surface. Going beyond conventional density functional theory (DFT), we apply the coherent potential approximation (BEB-CPA) in a mixed basis pseudo-potential framework to scan the substitutional phase-space of co-substitutions on the Se-sites. We have identified iodine as a promising candidate for intrinsic doping. Our specific proposal is that FeSe$_{0.325}$I$_{0.175}$Te$_{0.5}$ is a very likely candidate to exhibit a Dirac cone right at the Fermi energy without inducing strong disorder scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.