Abstract

To facilitate the design of future heterostructure devices employing two-dimensional (2D) materials such as molybdenum disulphide (MoS2) and hexagonal/sp2 boron nitride (BN), x-ray photoelectron spectroscopy (XPS) has been utilized to determine the valence band offset (VBO) present at interfaces formed between these materials. For MoS2 grown on a pulsed laser-deposited amorphous BN (a-BN) layer with sp2 bonding, the VBO was determined to be 1.4 ± 0.2 eV. Similarly, the VBO between the a-BN layer and the aluminum oxide (Al2O3) substrate was determined to be 1.1 ± 0.2 eV. Using the bandgaps established in the literature for MoS2, h-BN, and Al2O3, the conduction band offsets (CBOs) at the MoS2/a-BN and a-BN/Al2O3 interfaces were additionally calculated to be 3.3 ± 0.2 and 1.7 ± 0.2 eV, respectively. The resulting large VBOs and CBOs indicate BN and Al2O3 are attractive gate dielectrics and substrates for future 2D MoS2 devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call