Abstract

We present two constructions of infinite, separable, compact Hausdorff spaces K for which the Banach space C(K) of all continuous real-valued functions with the supremum norm has remarkable properties. In the first construction K is zero-dimensional and C(K) is non-isomorphic to any of its proper subspaces nor any of its proper quotients. In particular, it is an example of a C(K) space where the hyperplanes, one co-dimensional subspaces of C(K), are not isomorphic to C(K). In the second construction K is connected and C(K) is indecomposable which implies that it is not isomorphic to any C(K’) for K’ zero-dimensional. All these properties follow from the fact that there are few operators on our C(K)’s. If we assume the continuum hypothesis the spaces have few operators in the sense that every linear bounded operator T : C (K) → C (K) is of the form gI+S where g∈C(K) and S is weakly compact or equivalently (in C(K) spaces) strictly singular.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.