Abstract

BackgroundThe advent of next-generation sequencing (NGS) has made whole-genome sequencing of cohorts of individuals a reality. Primary datasets of raw or aligned reads of this sort can get very large. For scientific questions where curated called variants are not sufficient, the sheer size of the datasets makes analysis prohibitively expensive. In order to make re-analysis of such data feasible without the need to have access to a large-scale computing facility, we have developed a highly scalable, storage-agnostic framework, an associated API and an easy-to-use web user interface to execute custom filters on large genomic datasets.ResultsWe present BAMSI, a Software as-a Service (SaaS) solution for filtering of the 1000 Genomes phase 3 set of aligned reads, with the possibility of extension and customization to other sets of files. Unique to our solution is the capability of simultaneously utilizing many different mirrors of the data to increase the speed of the analysis. In particular, if the data is available in private or public clouds – an increasingly common scenario for both academic and commercial cloud providers – our framework allows for seamless deployment of filtering workers close to data. We show results indicating that such a setup improves the horizontal scalability of the system, and present a possible use case of the framework by performing an analysis of structural variation in the 1000 Genomes data set.ConclusionsBAMSI constitutes a framework for efficient filtering of large genomic data sets that is flexible in the use of compute as well as storage resources. The data resulting from the filter is assumed to be greatly reduced in size, and can easily be downloaded or routed into e.g. a Hadoop cluster for subsequent interactive analysis using Hive, Spark or similar tools. In this respect, our framework also suggests a general model for making very large datasets of high scientific value more accessible by offering the possibility for organizations to share the cost of hosting data on hot storage, without compromising the scalability of downstream analysis.

Highlights

  • The advent of next-generation sequencing (NGS) has made whole-genome sequencing of cohorts of individuals a reality

  • The user can increase throughput by adding workers to the Worker Ecosystem (WE), but since the horizontal scaling is limited by the eventual saturation of the link to the data backend, we focused on investigating how the use of multiple data sources affects scaling

  • We used BAM Search Infrastructure (BAMSI) to scan the data for alignments indicative of possible inversion events, and present a genome-wide overview of the results

Read more

Summary

Introduction

The advent of next-generation sequencing (NGS) has made whole-genome sequencing of cohorts of individuals a reality. Primary datasets of raw or aligned reads of this sort can get very large. For scientific questions where curated called variants are not sufficient, the sheer size of the datasets makes analysis prohibitively expensive. In order to make re-analysis of such data feasible without the need to have access to a large-scale computing facility, we have developed a highly scalable, storage-agnostic framework, an associated API and an easy-to-use web user interface to execute custom filters on large genomic datasets

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.