Abstract
Recent evidence indicates that microglial activation and hippocampal damage may play important roles in neurodegenerative diseases, including Alzheimer's disease. Bambusae Caulis in Taeniam has been used as a folk remedy for the treatment of hypertension and cardiovascular disease in China and Korea. In this study, the mechanism responsible for the neuroprotective and anti-neuroinflammatory effects of Bambusae Caulis in Taeniam ethyl acetate fraction (BCE) was investigated. Heme oxygenase-1 (HO-1) is an inducible enzyme expressed in response to various inflammatory stimuli. Due to its role in the anti-inflammatory signaling pathway, the expression and modulation of HO-1 are important. In this study, the neuroprotective and anti-neuroinflammatory effects of BCE were examined using the murine microglial BV2 and hippocampal HT22 cells. We demonstrated that the administration of BCE provided neuroprotective effects against glutamate-induced cytotoxicity in HT22 cells through the HO-1 and nuclear erythroid-2 related factor 2 (Nrf-2) signaling pathways. We also reported that BCE inhibited lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and that the presence of selective inhibitors of HO-1 (SnPP) resulted in the inhibition of BCE-mediated anti-inflammatory activity in BV2 microglial cells. BCE was shown to induce HO-1 expression as well as the nuclear translocation of Nrf-2 in both microglial and hippocampal cells. These findings revealed the potential therapeutic mechanisms of BCE in neurodegenerative diseases, suggesting that HO-1 and Nrf-2 signaling may play important roles in the mediation of its neuroprotective and anti-neuroinflammatory effects.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have