Abstract

We propose a definition of ballot secrecy as an indistinguishability game in the computational model of cryptography. Our definition improves upon earlier definitions to ensure ballot secrecy is preserved in the presence of an adversary that controls ballot collection. We also propose a definition of ballot independence as an adaptation of an indistinguishability game for asymmetric encryption. We prove relations between our definitions. In particular, we prove ballot independence is sufficient for ballot secrecy in voting systems with zero-knowledge tallying proofs. Moreover, we prove that building systems from non-malleable asymmetric encryption schemes suffices for ballot secrecy, thereby eliminating the expense of ballot-secrecy proofs for a class of encryption-based voting systems. We demonstrate applicability of our results by analysing the Helios voting system and its mixnet variant. Our analysis reveals that Helios does not satisfy ballot secrecy in the presence of an adversary that controls ballot collection. The vulnerability cannot be detected by earlier definitions of ballot secrecy, because they do not consider such adversaries. We adopt non-malleable ballots as a fix and prove that the fixed system satisfies ballot secrecy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.