Abstract

We propose and experimentally demonstrate a balloon-like optical fiber sensor with an anti-resonance mechanism for the simultaneous measurement of displacement and temperature. The sensor consists of a hollow-core fiber spliced between two single-mode fibers and bent into a balloon-like shape. The balloon-like structure not only increases the contrast of the spectral lines but also improves the displacement sensitivity. Theoretical and experimental results show that the incidence angle of light varies with the change in displacement, resulting in the variation of spectral intensity based on the anti-resonance mechanism. In addition, the temperature change causes the wavelength drift of the spectrum. Thus, by separately demodulating the intensity and wavelength of this sensor, it is possible to measure displacement and temperature simultaneously. The sensitivity of the displacement and temperature of the sensor is 0.043 dB/µm and 20.94 pm/°C, respectively. The proposed optical fiber sensor has a compact structure and simple preparation, making it an ideal choice for simultaneous measurement of displacement and temperature in the fields of micro-manufacturing and structural monitoring in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.