Abstract

Measurement of the horizontal components of gravity at altitude using balloon-borne instrumentation consisting of a Global Positioning System (GPS) receiver and a strapdown inertial navigation system (INS) is discussed. GPS data are to be used primarily to determine the total inertial acceleration of the balloon, while the INS accelerometers sense all nongravitational accelerations. A covariance analysis based on the Kalman filter shows that conventional gravity estimation from GPS-aided INS data is possible only if external attitude updates are also available. An alternative technique is explored that attempts to estimate at least part of the gravitational spectrum without modeling the gravity disturbance as a state variable or relying on external attitude updates, while, at the same time, admitting uncorrected (long-wavelength) attitude errors. Simulations based on a model for typical balloon motion are used to discuss this possibility.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.