Abstract

Ballistic thermal rectification is of significance for the management of thermal transport at the nanoscale since the size of thermal devices shrinks down to the phonon mean free path. By using the single-particle Lorentz gas model, the ballistic thermal transport in asymmetric homojunctions is investigated. The ballistic thermal rectification of the asymmetric rectangular homojunction is enhanced by the increasing structural asymmetry. A hyperbolic tangent profile is introduced to the interface to study the effect of interface steepness on thermal transport. We find that the thermal rectification ratio increases with the decreasing interface steepness, indicating that a gradual interface is of benefit to increase the thermal rectification. Moreover, the thermal rectification of the asymmetric homojunction can be improved by either increasing the temperature gradient or decreasing the average temperature of two heat sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.