Abstract
An effective and efficient methodology based on a strain-rate-dependent material model that can be applied to the simulations of ballistic impact on woven composites is presented in this paper. Firstly, a meso-heterogeneous model (fibre and matrix separately modelled) of R-glass-fibre woven composite was built and validated by tensile tests. Then, the model was used to obtain a strain-rate-dependent homogeneous material model with low computational cost and with a novel numerical environment to simulate high-velocity impact of the composite. Later, the proposed simulation framework was validated by conducting ballistic tests on the woven composite using full metal jacket (FMJ) projectiles. Exploiting strain-rate-dependent homogeneous material model, more accurate predictions of the composite delamination area and the residual velocity of projectiles were obtained compared to that without considering strain rate effects, especially for thick woven composites. The strain rate effect on targets with different thicknesses and the projectile deformation were also analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.