Abstract
In this research, we explore the effects of complex in-plane quasi-static loads on the high-velocity impact response of Carbon Fiber Reinforced Plastic (CFRP) composite laminates, grounded in the practical context of various working loads combined with potential high-velocity impacts experienced by aircraft. The specific complex in-plane loads studied include uniaxial tension and compression, biaxial tension and compression, and a combination of tension and compression preloading. The results show that the complexity of in-plane preloads, along with pre-compression, reduces the ballistic limit velocity. Biaxial preloading, especially in compression, greatly compromises the specimen's ballistic resistance. The study also proposes a theoretical model based on energy conservation principles to predict the ballistic limit velocity of CFRP laminates under various preloading conditions. The research provides valuable insights for designing composite structures and highlights the importance of considering in-plane preloads in assessing thin CFRP ability to withstand ballistic impacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.