Abstract

The paper presents an experimental and finite element investigation to explore the influence of target to projectile diameter ratio (D/d) on the ballistic performance and failure mechanism of thin aluminium plates. 1100-H12 aluminium target plates of 1 mm thickness were impacted by 19 mm diameter ogive and blunt nosed projectiles. The D/d ratio was varied by varying the span diameter of the target keeping the projectile diameter constant, 19 mm. The finite element simulations were carried out at D/d ratios 3.6, 5, 7.9, 10, 15, 20, 25, 30, 35 and 40. The validation of the simulation results was carried out by performing experiments at D/d ratio 3.6, 5, 7.9, 10 and 15.The total work done in plastic deformation of the target was disintegrated into circumferential, radial, axial and tangential stretching. An initial increment in D/d ratio from 3.6 to 10 has been found to have prominent effect on the ballistic limit particularly against blunt nosed projectile. Subsequent increase in the D/d ratio however, could not influence the ballistic resistance significantly. The energy absorption inplastic deformation was found maximum for D/d ratio 10. The maximum energy dissipation occurred in circumferential stretching against bunt and in tangential stretching against ogive nosed projectile. The minimum energy dissipated in axial stretching against both the projectile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call