Abstract

The present study deals with the experimental and numerical investigations of aluminum target plates impacted by blunt, ogive and hemispherical nosed steel projectiles. The projectiles were normally impacted on the target plates of 0.5, 0.71, 1, 1.5, 2, 2.5 and 3 mm thicknesses at different velocities with the help of a pneumatic gun. Effect of projectile nose shape, impact velocity and plate thickness on the deformation of the target plates was studied. Hemispherical nosed projectile caused highest global deformation (dishing) of the target plates. Ogive nosed projectiles were found to be the most efficient penetrator for the case of plates of thicknesses 0.5, 0.71, 1.0 and 1.5 mm. For the case of plates of thicknesses 2.0, 2.5 and 3.0 mm however, blunt nosed projectiles required least energy to perforate the target plates. The ballistic limit velocity of hemispherical nosed projectiles was found to be highest as compared to the other two projectiles. Finite element analysis of the problem was carried out using ABAQUS finite element code. Results of the numerical analysis were compared with the experiments and good correlation between the two was found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.