Abstract

We report on the observation of magnon thermal conductivity $\kappa_m\sim$ 70 W/mK near 5 K in the helimagnetic insulator Cu$_2$OSeO$_3$, exceeding that measured in any other ferromagnet by almost two orders of magnitude. Ballistic, boundary-limited transport for both magnons and phonons is established below 1 K, and Poiseuille flow of magnons is proposed to explain a magnon mean-free path substantially exceeding the specimen width for the least defective specimens in the range 2 K $<T<$ 10 K. These observations establish Cu$_2$OSeO$_3$ as a model system for studying long-wavelength magnon dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.