Abstract

We study the tunneling density of states (DOS) in an interacting disordered three-dimensional metal and calculate its energy dependence in the quasiballistic regime, for the deviation from the Fermi energy, $E-E_F$, exceeding the elastic scattering rate. In this region, the DOS correction originates from the interplay of the interaction and single-impurity scattering. Depending on the distance between the interaction point and the impurity, one should distinguish (i) the smallest scales of the order of the Fermi wavelength and (ii) larger spatial scales of the order of $\hbar v_F/|E-E_F|$, where $v_F$ is the Fermi velocity. In two dimensions, the large-scale contribution prevails, resulting in a nearly universal DOS correction. The peculiarity of Friedel oscillations in three dimensions is that the contributions from small and large scales are typically comparable, making the DOS correction sensitive to the details of the interaction and demonstrating a significant particle-hole asymmetry. On the other hand, we show that the non-analytic part of the DOS is determined by large scales and can be expressed in terms of the Fermi-surface characteristics only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.