Abstract

Consider a nice hyperbolic dynamical system (singularities not excluded). Statements about the topological smallness of the subset of orbits, which avoid an open subset of the phase space (for every moment of time, or just for a not too small subset of times), play a key role in showing hyperbolicity or ergodicity of semi-dispersive billiards, especially, of hard-ball systems. As well as surveying the characteristic results, called ball-avoiding theorems, and giving an idea of the methods of their proofs, their applications are also illustrated. Furthermore, we also discuss analogous questions (which had arisen, for instance, in number theory), when the Hausdorff dimension is taken instead of the topological one. The answers strongly depend on the notion of dimension which is used. Finally, ball-avoiding subsets are naturally related to repellers extensively studied by physicists. For the interested reader we also sketch some analytical and rigorous results about repellers and escape times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.