Abstract
Non-Hermitian extensions of the Anderson and Aubry-Andr\'e-Harper models are attracting a considerable interest as platforms to study localization phenomena, metal-insulator and topological phase transitions in disordered non-Hermitian systems. Most of available studies, however, resort to numerical results, while few analytical and rigorous results are available owing to the extraordinary complexity of the underlying problem. Here we consider a parity-time ($\mathcal{PT}$) symmetric extension of the Aubry-Andr\'e-Harper model, undergoing a topological metal-insulator phase transition, and provide rigorous analytical results of energy spectrum, symmetry breaking phase transition and localization length. In particular, by extending to the non-Hermitian realm the Thouless$^{\prime}$s result relating localization length and density of states, we derive an analytical form of the localization length in the insulating phase, showing that -- like in the Hermitian Aubry-Andr\'e-Harper model-- the localization length is independent of energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.