Abstract

The superlattice structures of hierarchical cluster solids are dictated by short-range interactions between constituent building blocks. Here we show that shape complementary sites, as well as halogen and chalcogen bonding between exposed capping ligands and fullerides, govern the packing arrangement of the resulting binary solids. Four new superatomic solids, [Ni3(μ3-I)2(μ2-dppm)3+](C60•-) (1·C60), [Ni3(μ3-I)2(μ2-dppm)3+](C70-)2 (1·C70), [Ni3(μ3-Te)2(μ2-dppm)3+](C60•-) (2·C60), and [Ni3(μ3-Te)2(μ2-dppm)3](C70-)2 (2·C70), (dppm = Ph2PCH2PPh2) were prepared and crystallized from solution. All four compounds were characterized by single crystal X-ray diffraction, IR spectroscopy, and SQUID magnetometry. Charge transfer between the molecular clusters is confirmed via optical spectroscopy and structural data. Compounds 1·C60 and 2·C60 are paramagnetic and 100 times more conductive than the constituent cluster precursors. The obtained solids exhibit close contacts, indicative of halogen/chalcogen bonds, between the fulleride anions and the nickel cluster capping ligands (I/Te) in the solid-state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.