Abstract

Balancing electricity supply and demand is a complex task. Renewable energy sources are often intermittent, while electrical loads vary throughout the day. This can result in an abundant supply that suppresses spot prices in one region, while another region simultaneously experiences tight supply margins and price spikes. Connecting these two regions through electrical interconnectors would enable greater utilization of renewable energy, but this can be expensive and is unfeasible for distant regions, such as between continents. However, datacenters are becoming ubiquitous around the world and are linked through fiber connections. This paper proposes a virtual interconnector (VIC) scheme using fiber to dynamically move energy demand, in the form of computation, to datacenters in other market regions with surplus low cost and renewable energy. This increases the global renewable penetration without requiring expensive grid interconnections. The associated benefits for the datacenter operator, the electricity grid controller, consumers, and the environment are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call