Abstract

We construct Balancing Domain Decomposition by Constraints methods for the linear systems arising from arbitrary order, finite element discretizations of the H(curl) model problem in three-dimensions. Numerical results confirm that the proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-logarithmic in the polynomial order of the curl-conforming discretization space. Additional numerical experiments, including higher-order geometries, upscaled finite elements, and adaptive coarse spaces, prove the robustness of our algorithm. A scalable three-level extension is presented, and it is validated with large scale experiments using up to 16,384 subdomains and almost a billion of degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.