Abstract

The convergence rate of domain decomposition methods is generally determined by the eigenvalues of the preconditioned system. For second-order elliptic partial differential equations, coefficient discontinuities with a large contrast can lead to a deterioration of the convergence rate. Only by implementing an appropriate coarse space, or second level, a robust domain decomposition method can be obtained. In this article, a new frugal coarse space for FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal) and BDDC (Balancing Domain Decomposition by Constraints) methods is presented, which has a lower set-up cost than competing adaptive coarse spaces. In particular, in contrast to adaptive coarse spaces, it does not require the solution of any local generalized eigenvalue problems. The approach considered here aims at a low-dimensional approximation of the adaptive coarse space by using appropriate weighted averages, and it is robust for a broad range of coefficient distributions for diffusion and elasticity problems. However, in general, for completely arbitrary coefficient distributions with high contrast, some additional, adaptively chosen constraints are necessary in order to guarantee robustness. In this article, the robustness is heuristically justified as well as numerically shown for several coefficient distributions. The new coarse space is compared to adaptive coarse spaces, and parallel scalability up to 262144 parallel cores for a parallel BDDC implementation with the new coarse space is shown. The superiority of the new coarse space over classic coarse spaces with respect to parallel weak scalability and time-to-solution is confirmed by numerical experiments. Since the new frugal coarse space is computationally inexpensive, it could serve as a new default coarse space, which, for very challenging coefficient distributions, could then still be enhanced by adaptively chosen constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.