Abstract
In silico analysis of biological activity data has become an essential technique in pharmaceutical development. Specifically, the so-called proteochemometric models aim to share information between targets in machine learning ligand–target activity prediction models. However, bioactivity data sets used in proteochemometric modeling are usually imbalanced, which could potentially affect the performance of the models. In this work, we explored the effect of different balancing strategies in deep learning proteochemometric target–compound activity classification models while controlling for the compound series bias through clustering. These strategies were (1) no_resampling, (2) resampling_after_clustering, (3) resampling_before_clustering, and (4) semi_resampling. These schemas were evaluated in kinases, GPCRs, nuclear receptors, and proteases from BindingDB. We observed that the predicted proportion of positives was driven by the actual data balance in the test set. Additionally, it was confirmed that data balance had an impact on the performance estimates of the proteochemometric model. We recommend a combination of data augmentation and clustering in the training set (semi_resampling) to mitigate the data imbalance effect in a realistic scenario. The code of this analysis is publicly available at https://github.com/b2slab/imbalance_pcm_benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.