Abstract
The electrochemical two‐electron oxygen reduction reaction (2e‐ ORR) offers a potentially cost‐effective and eco‐friendly route for the production of hydrogen peroxide (H2O2). However, the competing 4e‐ ORR that converts oxygen to water limits the selectivity towards hydrogen peroxide. Accordingly, achieving highly selective H2O2 production under low voltage conditions remains challenging. Herein, guided by first‐principles density functional theory (DFT) calculations, we show that modulation the first coordination sphere in Co single atom catalysts (Co‐N‐C catalysts with Co‐NxO4‐x sites), specifically the replacement of Co‐N bonds with Co‐O bonds, can weaken the *OOH adsorption strength to boost the selectivity towards H2O2 (albeit with a slight decrease in ORR activity). Further, by synthesizing a series of N‐doped carbon‐supported catalysts with Co‐NxO4‐x active sites, we were able to validate the DFT findings and explore the trade‐off between catalytic activity and selectivity for 2e‐ ORR. A catalyst with trans‐Co‐N2O2 sites exhibited excellent catalytic activity and H2O2 selectivity, affording a H2O2 production rate of 12.86 [[EQUATION]]and an half‐cell energy‐efficiency of 0.07 [[EQUATION]] during a 100‐h H2O2 production test in a flow‐cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.