Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a potentially cost-effective and eco-friendly route for the production of hydrogen peroxide (H2O2). However, the competing 4e- ORR that converts oxygen to water limits the selectivity towards hydrogen peroxide. Accordingly, achieving highly selective H2O2 production under low voltage conditions remains challenging. Herein, guided by first-principles density functional theory (DFT) calculations, we show that modulation the first coordination sphere in Co single atom catalysts (Co-N-C catalysts with Co-NxO4-x sites), specifically the replacement of Co-N bonds with Co-O bonds, can weaken the *OOH adsorption strength to boost the selectivity towards H2O2 (albeit with a slight decrease in ORR activity). Further, by synthesizing a series of N-doped carbon-supported catalysts with Co-NxO4-x active sites, we were able to validate the DFT findings and explore the trade-off between catalytic activity and selectivity for 2e- ORR. A catalyst with trans-Co-N2O2 sites exhibited excellent catalytic activity and H2O2 selectivity, affording a H2O2 production rate of 12.86 [[EQUATION]]and an half-cell energy-efficiency of 0.07 [[EQUATION]] during a 100-h H2O2 production test in a flow-cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.