Abstract
The balanced truncation approach to model reduction is considered for linear discrete-time periodic systems with time-varying dimensions. Stability of the reduced model is proved and a guaranteed additive bound is derived for the approximation error. These results represent generalizations of the corresponding ones for standard discrete-time systems. Two numerically reliable methods to compute reduced order models using the balanced truncation approach are considered. The square-root method and the potentially more accurate balancing-free square-root method belong to the family of methods with guaranteed enhanced computational accuracy. The key numerical computation in both methods is the determination of the Cholesky factors of the periodic Grammian matrices by solving nonnegative periodic Lyapunov equations with time-varying dimensions directly for the Cholesky factors of the solutions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have