Abstract

AbstractA class of balanced dual-band bandpass filters (BPFs) with planar transversal-signal-interference coupled-line sections is reported. In their building balanced dual-band BPF stage under differential-mode excitation, a second-order quasi-elliptic-type dual-band bandpass filtering transfer function is obtained. Specifically, from the transversal interaction among their two open-ended and virtually-short-ended half-wavelength coupled-line paths, sharp-rejection differential-mode dual passbands with several out-of-band transmission zeros at both sides are realized. To attain high common-mode suppression levels within the differential-mode passbands, two open-ended line segments are connected at the symmetry plane of the devised balanced dual-band BPF stage. Moreover, higher-order schemes based on in-series-cascaded multi-stage designs to further increase differential-mode selectivity and in-band common-mode rejection are illustrated. The operational principles and parametric-analysis design rules of the engineered transversal-coupled-line-based balanced dual-band BPF approach are detailed. Additionally, for a rigorous interpretation of their zero/pole characteristics, a digital-modeling framework is applied to them to connect RF balanced filters with their discrete-time versions. For practical-validation purposes, a microstrip prototype of two-stage/fourth-order balanced dual-band BPF is built and tested. It exhibits measured differential-mode dual passbands with center frequencies of 1.464 GHz and 2.294 GHz, 3-dB fractional bandwidths of 8.74% and 9.68%, and in-band common-mode rejection levels above 23.16 dB and 31.36 dB, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.