Abstract

In the human visual system, cerebral cortex combines left- and right-eye retinal inputs, enabling single, comfortable binocular vision. In visual cortex, the signals from each eye inhibit one another (interocular suppression). While this mechanism may be disrupted by e.g. traumatic brain injury, clinical assessments of interocular suppression are subjective, qualitative, and lack reliability. EEG is a potentially useful clinical tool for objective, quantitative assessment of binocular vision. In a cohort of normal participants, we measured occipital, visual evoked potentials (VEPs) in response to dichoptically-presented vertical and/or horizontal sine-wave gratings. Response amplitudes to orthogonal gratings were greater than that of parallel gratings, which were in turn greater than that of monocular gratings. Our results indicate that interocular suppression is (normally) balanced, orientation-tuned, and that suppression per se is reduced for orthogonal gratings. This objective measure of suppression may have application in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.