Abstract
A ring R is QF-1 if every faithful module has the double centralizer property. It is proved that a local finite dimensional algebra is QF-1 if and only if it is QF. From this it follows that an arbitrary finite dimensional algebra has the property that every homomorphic image is QF-1 if and only if every homomorphic image is QF.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have