Abstract
In this chapter, the authors present a segmentation-based word spotting method for handwritten documents using bag of visual words (BoVW) framework based on co-occurrence histograms of oriented gradients (Co-HOG) features. The Co-HOG descriptor captures the word image shape information and encodes the local spatial information by counting the co-occurrence of gradient orientation of neighbor pixel pairs. The handwritten document images are segmented into words and each word image is represented by a vector that contains the frequency of visual words appeared in the image. In order to include spatial information to the BoVW framework, the authors adopted spatial pyramid matching (SPM) method. The proposed method is evaluated using precision and recall metrics through experimentation conducted on popular datasets such as GW and IAM. The performance analysis confirmed that the method outperforms existing word spotting techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have