Abstract
For any j_1,...,j_n>0 with j_1+...+j_n=1 and any x \in R^n, we consider the set of points y \in R^n for which max_{1\leq i\leq n}(||qx_i-y_i||^{1/j_i})>c/q for some positive constant c=c(y) and all q\in N. These sets are the `twisted' inhomogeneous analogue of Bad(j_1,...,j_n) in the theory of simultaneous Diophantine approximation. It has been shown that they have full Hausdorff dimension in the non-weighted setting, i.e provided that j_i=1/n, and in the weighted setting when x is chosen from Bad(j_1,...,j_n). We generalise these results proving the full Hausdorff dimension in the weighted setting without any condition on x.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.