Abstract
Two levels of volcaniclastics, comprising conglomerates, sandstones and mudstones, are interbedded with upper middle Miocene (upper Badenian) andesite pyroclastics near the Hungarian-Slovakian border in the distal region of the Central Slovakian Neogene Volcanic Field. Based on the field sedimentological investigations, the facies of the volcaniclastics (e.g., lateral and vertical grain size changes, sedimentary structures, textures, clast composition), their geometry and field relationships are documented herein with the aim of reconstructing the depositional environment. The silica-cemented volcaniclastics are mostly andesite clasts with only ~ 5% being granitoid, quarzitic, and tuff clasts as well as charred fossil wood fragments. The coarse-grained facies association includes crudely stratified, tabular or lenticular, clast-supported pebble-cobble conglomerates with erosive basal surfaces, b-axis imbrication, alternating with sets of cross-bedding. The fine-grained facies association comprises cross-bedded pebbly to medium-grained sandstone and lenses of tuffaceous clayey siltstone with rare horizontal lamination and water-escape structures. Rip-up mudstone clasts, with diametre up to 1 m, are present in both facies associations, revealing the co-existence of abandoned silty palaeo-channel plugs. Facies associations are arranged in several 0.5-4-m-thick, fining-upwards successions that likely formed in shallow channels as downstream- to laterally accreting longitudinal bars, extensive gravel sheets and bars that migrated in peak flow during floods. Palaeocurrent indicators (i.e., clast imbrication, direction of planar cross-bedding, orientation of petrified wood logs) show bedload transport by traction currents, initially towards ~S, and later towards ~W. Intermittently debris flows also occurred. Cross-bedded sandstones formed as in-channel transverse bars during medium/low discharge. Variation of grain size shows frequent discharge fluctuations during permanently wet conditions in the late Badenian. The 4-5-m-deep, low-sinuosity channels were part of a high-energy, gravel-bed braided-river system on the south-eastern foothills of the Lysec palaeo-volcano. Here, pyroclastics were reworked and redeposited as volcaniclastics during inter-eruption, high-discharge episodes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have