Abstract

During the course of a study on the xylan-degrading community from the human gut, six xylanolytic, Gram-negative, anaerobic rods were isolated from faecal samples. 16S rRNA gene sequence analysis showed that the isolates were closely related to each other (> or =99 % sequence similarity) and that they belonged to the genus Bacteroides. On the basis of 16S rRNA gene sequence similarity, representative strain XB1AT was most closely related to the type strains of Bacteroides ovatus (97.5 %), B. finegoldii (96.5 %) and B. thetaiotaomicron (95.5 %). DNA-DNA hybridization results revealed that strain XB1AT was distinct from its closest relative, B. ovatus. The DNA G+C content of strain XB1AT (42.8 mol%) and major fatty acid composition (anteiso-C15 : 0, 33.8 %) further supported its affiliation to the genus Bacteroides. The novel isolates degraded different types of xylan, and were also able to grow on a variety of carbohydrates. Unlike most other Bacteroides species isolated from the human gut, these isolates were not able to degrade starch. Other biochemical tests further demonstrated that strain XB1AT could be differentiated from the closest related Bacteroides species. Xylan and sugars were converted by strain XB1AT mainly into acetate, propionate and succinate. Based on physiological, phenotypic and phylogenetic data, the six novel strains are considered to represent a novel species of the genus Bacteroides, for which the name Bacteroides xylanisolvens sp. nov. is proposed. The type strain is XB1AT (=DSM 18836T =CCUG 53782T).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.