Abstract
Interbacterial antagonism and associated defensive strategies are both essential during bacterial competition. The human gut symbiont Bacteroides fragilis secretes a ubiquitin homologue (BfUbb) that is toxic to a subset of B. fragilis strains in vitro. In the present study, we demonstrate that BfUbb lyses certain B. fragilis strains by non-covalently binding and inactivating an essential peptidyl-prolyl isomerase (PPIase). BfUbb-sensitivity profiling of B. fragilis strains revealed a key tyrosine residue (Tyr119) in the PPIase and strains that encode a glutamic acid residue at Tyr119 are resistant to BfUbb. Crystal structural analysis and functional studies of BfUbb and the BfUbb-PPIase complex uncover a unique disulfide bond at the carboxy terminus of BfUbb to mediate the interaction with Tyr119 of the PPIase. In vitro coculture assays and mouse studies show that BfUbb confers a competitive advantage for encoding strains and this is further supported by human gut metagenome analyses. Our findings reveal a previously undescribed mechanism of bacterial intraspecies competition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.