Abstract
A maximum entropy method (MEM) was developed for the study of the bacteriorhodopsin photocycle kinetics. The method can be applied directly to experimental kinetic absorption data without any assumption for the number of the intermediate states taking part in the photocycle. Though this method does not give a specific kinetics, its result is very useful for selection between possible photocycle kinetics. Using simulated data, it is shown that MEM gives correct results for the number of the intermediate states and the amplitude distributions around the characteristic lifetimes. Analyzing experimental absorption data at five different wavelengths, MEM gives seven or eight characteristic lifetimes, which means that at least so many distinct intermediate states exist during the photocycle. Many possible photocycle kinetic models were studied and compared with the MEM result. The best agreement was found with a branching photocycle model of eight intermediate states ( K, L, M 1, M 2, M 3, M 4, N, O). The branching occurs at the L intermediate state ( M 1 and M 2 being in one branch and M 3 and M 4 in the other branch), but at high pH it occurs already at the K state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.