Abstract

Climate change is enhancing the frequency of cyanobacterial blooms not only during summer but also in spring and autumn, leading to increased ecological impacts. The bacterioplankton community composition (BCC), in particular, is deeply affected by these blooms, although at the same time BCC can also play important roles in blooms’ dynamics. However, more information is still needed regarding BCC during species-specific cyanobacterial blooms. The goal of this study was to assess BCC succession in a hypereutrophic shallow lake (Vela Lake, Portugal) during a warm spring using a metagenomic approach to provide a glimpse of the changes these communities experience during the dominance of Aphanizomenon-like bloom-forming species. BCC shifts were studied using 16S rRNA gene metabarcoding and multivariate analyses. A total of 875 operational taxonomic units (OTUs) were retrieved from samples. In early spring, the dominant taxa belonged to Proteobacteria (mainly Alphaproteobacteria—Rickettsiales) and Bacteroidetes (Saprospirales, Flavobacteriales and Sphingobacteriales). However, at the end of May, a bloom co-dominated by cyanobacterial populations of Aphanizomenon gracile, Sphaerospermopsis aphanizomenoides and Synechococcus sp. developed and persisted until the end of spring. This led to a major BCC shift favouring the prevalence of Alphaproteobacteria (Rickettsiales and also Rhizobiales, Caulobacteriales and Rhodospirillales) and Bacteroidetes (Saprospirales, followed by Flavobacteriales and Sphingobacteriales). These results contribute to the knowledge of BCC dynamics during species-specific cyanobacterial blooms, showing that BCC is strongly affected (directly or indirectly) by Aphanizomenon-Sphaerospermopsis blooms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call